
SE489 DevOps Engineering

Lab 3

Lab 3: GitHub

Objective: After successful completion of this lab, students will understand concepts and

commands of GitHub and would be able to develop code collaboratively.

1. Open URL https://github.com/new

use your credentials if you have already registered, if not, sign on, and then it will bring you

to this interface, create a new repository

https://github.com/new

With this you have created a public repository in your account

2. Let’s make a SSH secure connection with this repository, this is necessary to secure your

public repository from malicious or erroneous pushes. To achieve this, do followings

a. Open git bash terminal

b. Navigate to local repository

c. On $ prompt, write ssh-keygen

d. It will ask for file name to which key will be stored, don’t write anything and when it

asks for passphrase also don’t provide anything, by default, key will be saved into

id_rsa.pub(public key) and id_rsa(private key)

3. The key shown here is masked, to see the complete key, let’s open the sshkey file, use

command cat file_name to print the contents of the file at terminal

a. To see the list of files in the repository, use ls.

b. second last file contains private key, we don’t need it, the last file with .pub extension

is the sought file containing public key, use cat command to open it.

copy this key

Alternatively

$cat id_rsa.pub | clip, will copy the key into clipboard without displaying it

4. Now go back to GitHub websiteSettingsSSH and GPG keysNew SSH key

5. Paste the copied key into the space given, assign it a name and then finally click on Add SSH

key

6. Following screen appears, showing the key added

7. Let’s authenticate this key, go back to the git terminal, and run following command

Means we have authenticate the pair of keys we have generated. This can be verified from the website

as well.

8. Let’s go back to the website, go to the repository we have created viz. DevOps, it will be

showing only one branch as we didn’t do anything here

9. Copying the url of the repository, click on the code button at the right side, click on SSH, and

then click on the copy icon to copy the url of the repository. This is url of the remote

repository, in which we will be doing remote operations.

10. Adding remote repository, git remote add origin command is used to add a remote repository

to the local repository

PS: “origin” in the command refers to the current repository, it may be any repository, it just adds a

current repository into remote location, specified by url.

11. Now let’s push files from local repository to remote repository

12. To make a local working copy of the remote repository, clone the repository with git clone

command

a. Write ls to check the contents of the master repo

b. Use git clone command to get the local working repo of the remote repo

c. Check contents again by ls

13. These changes can be observed at GitHub website

Change branch from main to master

Clearly the commits are visible

14. Let’s make some changes into the remote repository

a. Click at the Add a README

b. Make some changes into the shown readme file, e.g.

c. Commit new file

15. Now since we had made some changes in the remote repository (added README file), let’s

make a pull request, to reflect those changes into the local repository

Clearly, we can see, README.md is now part of local repository.

16. Let’s make some changes into demo222.java and subsequently commit and push it.

a. At $ prompt, write notepad demo222.java

b. Add a simple for loop

c. Save the file

17. Add this file to the staging area, -u can be used to update only file that has changed

18. Now commit this file with message, “for loop added”

19. Let’s suppose after committing this change, user give their feedbacks, and we realize that we

need to revert back to previous version of the code, then do the following steps

a. Write cat demo222.java, it will print contents of the demo222.java file on the console

b. Run the code, $ git log

c. Use arrow keys to navigate to the end of the file

d. Find the commit message “with one print statement”

e. Copy first 8 characters from the long string written just next to the commit

20. Write git checkout <8 characters> <filemame> and subsequently cat demo222.java to

verify the changes

Clearly, there is no more for loop.

This is known as version restore.

